• Skip to primary navigation
  • Skip to main content
  • Skip to footer
NICO CorporationSecondary logo

NICO Corporation

Dedicated to revolutionizing minimally invasive neurosurgery

  • Home
  • Patients
  • Professionals
    • Our Capabilities
    • Our Integrated System
    • Our Surgical Focus
    • Our Impact
    • Published Data
    • Global Distribution
    • NICO Technologies for Pre-Clinical Research
    • Medical Education
    • ENRICH Clinical Trial
  • Company
    • Our Mission
    • Our Leadership Team
    • News & Events
  • LinkedIn
  • Twitter
  • YouTube

MIPS Bibliography

Home » Published Data » MIPS Bibliography

Support for MIPS with BrainPath® and Myriad™

(Published/Presented Clinical Data Last Updated 07/29/24)

Table of Contents

  1. MIPS Key Concept: Preservation of Fascicular Anatomy & White Matter Tract Recovery
  2. Vascular Applications of MIPS
    1. Minimally Invasive Parafascicular Surgery for Intracerebral Hemorrhage
    2. Minimally Invasive Parafascicular Surgery for Traumatic Intracerebral Hemorrhage
    3. Minimally Invasive Parafascicular Surgery for Other Vascular Abnormalities
  3. Tumor Applications of MIPS & Biopsy
    1. Minimally Invasive Parafascicular Surgery or Biopsy for Primary Tumors, Secondary Tumors, Cysts, & Lesions
    2. Minimally Invasive Parafascicular Surgery for Intraventricular Tumors, Cysts, and Lesions
  4. MIPS Across Multiple Disease States
  5. Pediatric Applications of MIPS

MIPS Key Concept: Preservation of Fascicular Anatomy & White Matter Tract Recovery

  1. Lavrador JP, Rajwani K, Patel S, Kalaitzoglou D, Soumpasis C, Gullan R, et al. Ultra-early navigated transcranial magnetic stimulation for perioperative stroke: anatomo-functional report. Cerebral Cortex. 2024; 34(6):bhae251.
    https://doi.org/10.1093/cercor/bhae251
  2. Vitulli F, Kalaitzoglou D, Soumpasis C, Diaz-Baamonde A, Mosquera JDS, Gullan R, et al. Cortical-subcortical functional preservation and rehabilitation in neuro-oncology: Tractography-MIPS-IONM-TMS proof-of-concept study. J Pers Med. 2023;13(8).
    https://doi.org/10.3390/jpm13081278
  3. Alms C, Eseonu CI. Comparative Quantification of Diffusion Tensor Tractography. Cureus. 2022; 14(5): e25546.
    https://doi:10.7759/cureus.25546
  4. Mess G. Focused Ultrasound for the Treatment of GBM: From Computer Modelling to BBB Openings. Johns Hopkins Sheridan Libraries. 2022.
    http://jhir.library.jhu.edu/handle/1774.2/67286
  5. Gallagher MJ, Lavrador JP, Coelho P, Mirallave-Pescador A, Bleil C, Gullan R, et al. Continuous microdebriders-based dynamic subcortical motor mapping: a technical advance in tubular retractor-assisted surgery. Operative Neurosurgery. 2022; 23(3):217-224. https://doi.org/10.1227/ons.0000000000000281
  6. Jennings JE, Chakravarthi SS, Monroy-Sosa A, Epping A, Fukui MB, Rovin RA, et al. Chapter 10: Advancements in fMRI and DTI for Planning Robotically Guided Parafascicular Neurosurgical Trajectories. Principles of Neuro-Oncology. 2020; 225-244.
    https://doi.org/10.1007/978-3-030-54879-7_10
  7. Gianaris T, Monaco G, Weyhenmeyer J, Shah M. Diffusion tensor imaging in neuronavigation to guide a trans-sulcal approach to glioma in awake craniotomy. Poster #1811 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48888&itemid=EPOSTER&propid=45689
  8. Agarwal V, Malcolm JG, Pradilla G, Barrow DL. Tractography for optic radiation preservation in transcortical approaches to intracerebral lesions. Cureus. 2017; 9(9): e1722.
    https://dx.doi.org/10.7759/cureus.1722
  9. Chakravarthi SS, Zbacnik A, Jennings J, et al. White matter tract recovery following medial temporal lobectomy and selective amygdalohippocampectomy for tumor resection via a ROVOT-m port-guided technique: A case report and review of literature. Interdisciplinary Neurosurgery. 2016; 6:55-61.
    http://dx.doi.org/10.1016/j.inat.2016.07.004
  10. Zucker, L. Corticospinal tract restoration post parafascicular transulcal subcortical (thalamic) ICH evacuation. Poster #1450 presented at: 2016 Congress of Neurological Surgeons Annual Meeting; September 24-28, 2016; San Diego, CA.
    http://2016.cns.org/posterbrowser.aspx

Vascular Applications of MIPS

Minimally Invasive Parafascicular Surgery for Intracerebral Hemorrhage

  1. Abraham BM, Manikowski K, Risk N, Schmid A, Coy A, Bohnstedt BN. Recent trends of treatment strategies and outcomes of basal ganglia hemorrhages at a single institution. Hemorrhagic Stroke. 2024; PreProof.
    https://doi.org/10.1016/j.hest.2024.03.001
  2. Murthy SB. Emergent management of intracerebral hemorrhage. Neurocritical Care. 2024; 30(3):641-661.
    https://doi.org/10.1212/CON.0000000000001422
  3. Pradilla G, Ratcliff JJ, Hall AJ, Saville BR, Allen JW, Paulon G, et al. Trial of early minimally invasive removal of intracerebral hemorrhage. New England Journal of Medicine. 2024; 390:14.
    https://doi.org/10.1056/NEJMoa2308440
  4. Kashkoush AI, El-Abtah ME, Achey R, Winkelman R, Glauser G, Patterson TE, et al. Prognosticators of Functional Outcome After Supratentorial Minimally Invasive Intracranial Hemorrhage Evacuation with Tubular Retractor Systems. Oper Neurosurg (Hagerstown). 2023;25(5):408-416.
    https://doi.org/10.1227/ons.0000000000000845
  5. Shah I, Chen PM, Tran DKT, Chen JW. Cerebral microdialysis demonstrates improvements in brain metabolism with cerebrospinal fluid diversion in spontaneous intracerebral hemorrhage. Surg Neurol Int. 2023;14:395. Published 2023 Nov 10.
    https://doi.org/10.25259/SNI_679_2023
  6. Kleinig O, Ovenden CD, Abou-Hamden A, Klenig T. An update on the acute surgical management of intracerebral haemorrhage. Adv Clin Neurosci Rehabil. 2023; 21(2):4-6.
    https://doi.org/10.47795/IORT4059
  7. Markus HS. New World Stroke Organization global stroke guidelines, and minimally invasive surgery improves outcome for lobar intracerebral haemorrhage. International Journal of Stroke. 2023; 18(5): 496-498.
    http://doi.org/10.1177/17474930231174937
  8. Ratcliff JJ, Hall AJ, Porto E, Saville BR, Lewis RJ, Allen JW, et al. Early minimally invasive removal of intracerebral hemorrhage (ENRICH): study protocol for a multi-centered two-arm randomized adaptive trial. Frontiers in Neurology. 2023; 14:1126958.
    https://doi.org/10.3389/fneur.2023.1126958
  9. Chen P, Shah I, Tran K, Jefferson C. 493. Multimodal Neuromonitoring: Cerebral Microdialysis in a Case of Intracerebral Hemorrhage. Critical Care Medicine. 2023; 51(1): 234.
    http://doi.org/10.1097/01.ccm.0000907700.76390.dd
  10. Ali M, Zhang X, Ascanio LC, Troiani Z, Smith C, Dangayach NS, wt al. Long-term functional independence after minimally invasive endoscopic intracerebral hemorrhage evacuation. Journal of Neurosurgery. 2022; 138(1): 154-164.
    https://doi.org/10.3171/2022.3.JNS22286
  11. Musa MJ, Carpenter AB, Kellner C, Sigounas D, Godage I, Sengupta S, et al. Minimally Invasive Intracerebral Hemorrhage Evacuation: A review. Annals of Biomedical Engineering. 2022; 50: 365-386.
    https://doi.org/10.1007/s10439-022-02934-z
  12. Falcone J, Chen JW.  Early minimally invasive parafascicular surgery for evacuation of spontaneous intracerebral hemorrhage in the setting of computed tomography angiography spot sign: a case series.  Operative Neurosurgery. 2022; 22(3):123-130.
    https://dx.doi.org/10.1227/ONS.0000000000000078
  13. Song R, Muhammad BA, Smith C, Jankowitz B, Hom D, Mocco J, et al. Initial experience with the NICO Myriad device for minimally. Operative Neurosurgery. 2022; 23(3): 194-199.
    https://doi.org/10.1227/ons.0000000000000304
  14. Feletti A, Fiorindi A. Hemorrhagic Stroke: Endoscopic Aspiration. Cerebrovascular Surgery. 2022; 97-119.
    https://doi.org/10.1007/978-3-030-87649-4_5
  15. Garcia-Estrada E, Morales-Gómez JA, Garza-Báez A, Sotomayor-González A, Palacios-Ortiz IJ, Mercado-Flores M, et al. 3D-Printed Endoport vs. Open Surgery for Evacuation of Deep Intracerebral Hemorrhage. Canadian Journal of Neurological Sciences. 2022; 49(5): 636-643.
    https://doi.org/10.1017/cjn.2021.185
  16. Rindler RS, Pradilla G. Chapter 15: Trans-Sulcal, Channel-Based Parafascicular Surgery for Intracerebral Hematoma. Subcortical Neurosurgery. 2022; 217-229.
    https://doi.org/10.1007/978-3-030-95153-5_15
  17. Zheng Z, Wang Q, Sun S, Luo J. Minimally Invasive Surgery for Intracerebral and Intraventricular Hemorrhage. Front Neurol. 2022; 13.
    http://doi.org/10.3389/fneur.2022.755501
  18. Carpenter AB, Lara-Reyna J, Hardigan T, Ladner T, Kellner C, Yaeger K.  Use of emerging technologies to enhance the treatment paradigm for spontaneous intraventricular hemorrhage.  Neurosurgical Review.  2022; 45: 317-329.
    https://doi.org/10.1007/s10143-021-01616-z
  19. Liang B, Zhang Y, Nguyen AV, Huang JH, Feng D.  Surgical evacuation of intracerebral hemorrhage using DTT-guided parafascicular BrainPath/Myriad technique.  Brain Hemorrhages. 2022; 3(3):120-123.
    https://doi.org/10.1016/j.hest.2021.06.002
  20. Kellner CP, Schupper AJ, Mocco J.  Surgical evacuation of intracerebral hemorrhage: the potential importance of timing.  Stroke. 2021; 52:3391-3398.
    https://doi.org/10.1161/STROKEAHA.121.032238
  21. O’Carroll CB, Brown BL, Freeman WD.  Intracerebral hemorrhage: a common yet disproportionately deadly stroke subtype.  Thematic Review on Neurovascular Diseases.  2021; 96(6):1639-1654.
    https://doi.org/10.1016/j.mayocp.2020.10.034
  22. Hannah TC, Kellner R, Kellner CP.  Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques: A Review.  Diagnostics. 2021; 11(3):576.
    https://doi.org/10.3390/diagnostics11030576
  23. Achey R, Moore N, Bain M.  Use of 11mm BrainPath endoport in minimally invasive hematoma evacuation: a case report.  Interdisciplinary Neurosurgery.  2021; 23:100945.
    https://doi.org/10.1016/j.inat.2020.100945
  24. Chakravarthi SS, Lyons L, Orozco AR, Verhey L, Mazaris P, Zacharia J, et al.  Combined decompressive hemicraniectomy (DHC) and port-based minimally-invasive Parafascicular surgery (MIPS) for the treatment of subcortical intracerebral hemorrhage: Case series, Technical note, and Review of literature.  World Neurosurgery. 2021; 146:e1226-1235.
    https://doi.org/10.1016/j.wneu.2020.11.130
  25. Vitt JR, Sun CH, Le Roux PD, Hemphill 3rd JC.  Minimally invasive surgery for intracerebral hemorrhage.  Curr Opin Crit Care. 2020 April; 26(2):129-136.
    https://doi.org/10.1097/MCC.0000000000000695
  26. Phillips VL, Roy AK, Ratcliff J, Pradilla G.  Minimally invasive Parafascicular surgery (MIPS) for spontaneous intracerebral hemorrhage compared to medical management: a case series comparison for a single institution. Stroke Research and Treatment. 2020; Article ID 6503038.
    https://doi.org/10.1155/2020/6503038
  27. Das S, Pradilla G, Khalessi A.  Minimally invasive surgery for patients with spontaneous intracerebral hemorrhage: a book reopened.  SN Comprehensive Clinical Medicine. 2020; 2:640-643.
    https://doi.org/10.1007/s42399-020-00287-z
  28. Pan J, Chartrain AG, Scaggiante J, Spiotta AM, Tang Z, Wang W, et al.  A compendium of modern minimally invasive intracerebral hemorrhage evacuation techniques.  Operative Neurosurgery. 2020. 18(6): 710-720.
    https://dx.doi.org/10.1093/ons/opz308
  29. Marenco-Hillembrand L, Suarez-Meade P, Garcia HR, Murguia-Fuentes R, Middlebrooks EH, Kangas L, et al.  Minimally invasive surgery and transsulcal parafascicular approach in the evacuation of intracerebral haemorrhage.  Stroke and Vascular Neurology. 2020; 5.
    https://dx.doi.org/10.1136/svn-2019-000264
  30. Rutkowski M, Song I, Mack W, Zada G.  Outcomes after minimally invasive Parafascicular surgery for intracerebral hemorrhage: a single-center experience.  World Neurosurgery. 2019; 132:e520-e528.
    https://doi.org/10.1016/j.wneu.2019.08.087
  31. Shao J, Witek A, Borghel-Razavi H, Bain M, Recinos PF.  Endoscopic evacuation of intracerebral hematoma utilizing a side-cutting aspiration device. Operative Neurosurgery. 2019. 18(6): E248-E254.
    https://dx.doi.org/10.1093/ons/opz309
  32. Song I, Rutkowski M, Mack W, Zada G.  Clinical and radiographic outcomes following intracerebral hematoma evacuation via BrainPath-assisted minimally invasive craniotomy.  Poster #1044 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48888&itemid=EPOSTER&propid=45330
  33. Griessenaurer CJ, Medin C, Goren O, Schirmer C.  Image-guided minimally invasive evacuation of intracerebral hematoma: a matched cohort study comparing endoscopic and tubular exoscopic systems.  Poster #1084 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48732&itemid=EPOSTER&propid=41281
  34. Bain M, Witek A, Moore N, Pradilla G.  Targeting spot sign in intracerebral hemorrhage with NICO BrainPath minimally invasive parafascicular surgery to prevent hematoma expansion.  Oral Presentation O-106 presented at: 2019 World IntraCranial Hemorrhage Conference; May 19-21, 2019; Granada, Spain.
    https://worldich.org/2019/scientific-information/abstract-e-book#.XSOGGOhKjnY
  35. Verhey LH, Lyoncs L, Mazaris P, Zachariah J, Singer JA.   Hemicraniectomy with minimally invasive evacuation for intracranial hematoma: a novel hybrid technique. Abstract SO-065 presented at: 2019 World IntraCranial Hemorrhage Conference; May 19-21, 2019; Granada, Spain.
    https://worldich.org/2019/scientific-information/abstract-e-book#.XSOGGOhKjnY
  36. Kon Kam King N.  Initial experience with minimally invasive parafascicular surgical approach for evacuation of supratentorial intracerebral hemorrhage. Oral Presentation SO-003 presented at: 2019 World IntraCranial Hemorrhage Conference; May 19-21, 2019; Granada, Spain.
    https://worldich.org/2019/scientific-information/abstract-e-book#.XSOGGOhKjnY
  37. Kon Kam King N.  Minimally invasive parafascicular surgery for supratentorial intracerebral hemorrhage. Oral Presentation O-109 presented at: 2019 World IntraCranial Hemorrhage Conference; May 19-21, 2019; Granada, Spain.
    https://worldich.org/2019/scientific-information/abstract-e-book#.XSOGGOhKjnY
  38. Vargas J, Spiotta AM, Turner RD.  Spontaneous Intracerebral Hemorrhage.  Management of Cerebrovascular Disorders.  2019; Chapter 24: 381-395.
    https://doi.org/10.1007/978-3-319-99016-3_24
  39. Ratcliff J, Hall A, Jankowitz B, Molyneaux B, Bain M, Gomes J, et al.  Clinical Trial Update: Early Minimally Invasive Removal of Intracerebral Hemorrhage (ENRICH) Clinical Trial.  Presented at: 2019 International Stroke Conference; February 6-8, 2019; Honolulu, HI.
    https://eventpilotadmin.com/web/page.php?page=Inthtml&project=ISC19&id=1659
  40. Griessenaurer C, Medin C, Goren O, Schirmer CM.  Image-guided, minimally-invasive evacuation of intracerebral hematoma: a matched cohort study comparing the endoscopic and tubular exoscopic systems.  Cureus. 2019; 10(11): e3569.
    https://doi.org/10.7759/cureus.3569
  41. Bhatia K, Hepburn M, Ziu E, Siddiq F, Quershi AI.  Modern approaches to evacuating intracerebral hemorrhage.  Current Cardiology Reports. 2018; 20:132.
    http://dx.doi.org/10.1007/s11886-018-1078-4
  42. Cusack TJ, Carhuapoma JR, Ziai WC.  Update on the treatment of spontaneous intraparenchymal hemorrhage: medical and interventional management. Current Treatment Options in Neurology. 2018; 20:1.
    http://dx.doi.org/10.1007/s11940-018-0486-5
  43. Cavallo C, Zhao X, Abou-Al-Shaar H, Weiss M, GandhiS, Belykh E, et al.  Minimally invasive approaches for the evacuation of intracerebral hemorrhage: a systematic review.  Journal of Neurosurgical Sciences. 2018; 62(6):718-733.
    http://www.dx.doi.org/10.23736/S0390-5616.18.04557-5
  44. Vargas J, Spiotta AM, Turner RD.  Surgical Treatment of Intracerebral Hemorrhage.  Intracerebral Hemorrhage Therapeutics.  2018; Chapter 6: 81-93.
    https://doi.org/10.1007/978-3-319-77063-5_6
  45. Sindelar BD, Patel V, Chowdhry S, Bailes JE.  A case report in hemorrhagic stroke: a complex disease process and requirement for a multimodal treatment approach.  Cureus.  2018; 10(7): e2976.
    http://www.dx.doi.org/10.7759/cureus.2976
  46. Scaggiante J, Zhang X, Mocco J, Kellner CP.  Minimally invasive surgery for intracerebral hemorrhage: an updated meta-analysis of randomized controlled trials.  Stroke. 2018; 49(11):2612-2620.
    http://dx.doi.org/10.1161/STROKEAHA.118.020688
  47. Ratcliff JJ, Hall AJ, Jankowitz BT, Molyneaux BJ, Bain MD, Gomes JA, et al.  Clinical trial update: early minimally invasive removal of intracerebral hemorrhage (ENRICH) clinical trial.  Presented at: 2018 International Stroke Conference; January 24-26, 2018; Los Angeles, CA.
    https://professional.heart.org/professional/EducationMeetings/MeetingsLiveCME/InternationalStrokeConference/UCM_316939_Archive-International-Stroke-Conference.jsp
  48. Ratcliff JJ, Hall AJ, Saville BR, Phillips VL, Sekerak P, Lewis RJ, et al.  Trial design, methods, and rationale for the early minimally invasive removal of intracerebral hemorrhage (ENRICH) clinical trial. Presented at: 2017 Neurocritical Care Society Annual Meeting; Hilton Waikoloa Village, HI.
  49. Ding D, Przybylowski CJ, Starke RM, Crowley W, Liu KC.  Eyebrow incision for surgical evacuation of a lobar intracerebral hematoma with a novel endoport system.  Journal of Cerebrovascular and Endovascular Neurosurgery. 2017; 19(2):101-105.
    https://doi.dx.org/10.7461/jcen.2017.19.2.101
  50. Labib MA, Shah M, Kassam AB, Young R, Zucker L, Maioriello A, et al.  The safety and feasibility of image-guided BrainPath-mediated transsulcul hematoma evacuation: a multicenter study.  Neurosurgery.  2017; 80(4):515-524.
    http://dx.doi.org/10.1227/NEU.0000000000001316
  51. Sujijantarat N, El Tecle N, Pierson M, Urquiaga JF, Quadri NF, Ashour AM, et al.  Trans-sulcal endoport-assisted evacuation of supratentorial intracerebral hemorrhage: initial single-institution experience compared to matched medically managed patients and effect on 30-day mortality.  Operative Neurosurgery.  2017; 14(5):524-531.
    https://doi.org/10.1093/ons/opx161
  52. Lang M, Witek AM, Moore NZ, Bain MD.  Clinical Outcomes of Patients Undergoing BrainPath-assisted Evacuation of Intracerebral Hemorrhage.  Abstract presented at: 2017 International Stroke Conference; February 22-24, 2017; Houston, TX.
    https://aha.scientificposters.com/epsAbstractAHA.cfm?id=1
  53. Bauer AM, Rasmussen PA, Bain MD.  Initial single-center technical experience with the BrainPath system for acute intracerebral hemorrhage evacuation.  Operative Neurosurgery.  2017; 13(1):69-76.
    https://academic.oup.com/ons/article-abstract/13/1/69/2608027?redirectedFrom=fulltext
  54. Ziai W, Nyquist P, Hanley DF.  Surgical strategies for spontaneous intracerebral hemorrhage.  Seminars in Neurology. 2016; 36:261-268.
    http://dx.doi.org/10.1055/s-0036-1582131
  55. Fiorella D, Arthur A, Bain M, Mocco J.  Minimally invasive surgery for intracerebral and intraventricular hemorrhage.  Stroke. 2016; 47:1399-1406.
    http://dx.doi.org/10.1161/STROKEAHA.115.011415
  56. Przybylowski CJ, Ding D, Starke RM, Crowley RW, Liu KC. Endoport-assisted surgery for the management of spontaneous intracerebral hemorrhage. Journal of Clinical Neuroscience. 2015; 22(11): 1727-1732.
    http://dx.doi.org/10.1016/j.jocn.2015.05.015
  57. Ding D, Przybylowski CJ, Starke, RM, et al. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage. Journal of Clinical Neuroscience. 2015; 22(11): 1816-1819.
    http://dx.doi.org/10.1016/j.jocn.2015.03.052
  58. Chen J, Tran K, Dastur C, Stradling D, Yu W.  The use of the BrainPath stereotactic guided surgery for the removal of spontaneous intracerebral hemorrhage: a single institutional experience.  Abstract presented at: 2015 NeuroCritical Care Society Meeting; October 7-10, 2015; Scottsdale, AZ.
    http://link.springer.com/article/10.1007/s12028-015-0193-y
  59. Kulwin C, Rodgers R, Shah M.  Preliminary experience with evacuation of intracerebral hemorrhage via a minimally invasive parafascicular technique. Presented at: 2015 Neurosurgical Society of America Annual Meeting; April 2015.
  60. Labib M, Britz G, Young R, Zucker L, Shah M, Kulwin CG, et al.  The safety and efficacy of image-guided trans-sulcal radial corridors for hematoma evacuation: a multicenter study.  Late breaking oral presentation LB12 at: 2015 International Stroke Conference; February 11-13, 2015; Nashville, TN.
    http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_471665.pdf
  61. Britz G, Kassam AB, Labib M, Young R, Zucker L, Maioriello A, et al.  Minimally invasive subcortical parafascicular access for clot evacuation: a paradigm shift.  Poster # MP120 presented at: 2015 International Stroke Conference; February 11-13, 2015; Nashville, TN.
    http://stroke.ahajournals.org/content/46/Suppl_1/AWMP120.short?rss=1
  62. Ritsma B, Kassam AB, Dowlatshahi D, Nguyen T, Stotts G. Minimally invasive subcortical parafascicular transsulcal access for clot evacuation (Mi SPACE) for intracerebral hemorrhage. Case Rep Neurol Med. 2014; 2014(102307): 4 pages.
    http://dx.doi.org/10.1155/2014/102307
  63. Ghinda DC, Bafaquh M, Labib M, Kumar R, Agbi CB, Kassam AB.  A Transulcul Exoscopic radial corridor approach for the management of primary intracranial hemorrhage.  Poster #1621 presented at: 2013 Congress of Neurological Surgeons Annual Meeting; October 19-23, 2013; San Francisco, CA.
    http://2013.cns.org/posterbrowser.aspx

Minimally Invasive Parafascicular Surgery for Traumatic Intracerebral Hemorrhage

  1. Tran DKT, Xu J, Shah I, Tran P, Chen J.  Cerebral microdialysis as a marker of perihematomal edema in spontaneous and traumatic intracranial hemorrhages.  Poster #1889 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48888&itemid=EPOSTER&propid=45593
  2. Chen JW, Tran DK, Soldevilla F, Dickinson L, Adler D.  Multi-center experience treating traumatic intracerebral hemorrhages with minimally invasive parafascicular techniques.  Poster #1929 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48888&itemid=EPOSTER&propid=45615
  3. Chen JW, Paff MR, Abrams-Alexandru D, Kaloostian SW.  Decreasing the cerebral edema associated with traumatic intracerebral hemorrhages: use of a minimally invasive technique.  In: RL Applegate et al (eds), Brain Edema XVI: Translate Basic Science into Clinical Practice, Acta Neurochirurgica Supplement. 2016; 121:279-284.
    http://www.dx.doi.org/10.1007/978-3-319-18497-5_48
  4. Chen J, Kaloostian SW.  Use of minimally invasive techniques under austere circumstances for the urgent resection of subcortical intracerebral hemorrhages.  Poster #0075 presented at: 12th Annual Conference of the Society for Brain Mapping and Therapeutics; March 6-8, 2015.

Minimally Invasive Parafascicular Surgery for Other Vascular Abnormalities

  1. Gurses ME, Lu VM, Gecici NN, Shah KH, Gokalp E, Bashti M, et al. Utilizing tubular retractors in colloid cyst resection: a single surgeon experience. Surgical Neurology International: Neuro-Oncology. 2024; 15:179.
    https://doi.org/10.25259/SNI_231_2024
  2. Whiting BB, Bain MD. Chapter 16: Trans-sulcal, Channel-Based Parafascicular Surgery for Cavernous Angiomas and Other Vascular Lesions. Subcortical Neurosurgery. 2022; 231-236.
    https://doi.org/10.1007/978-3-030-95153-5_16
  3. Strickland BA, Brunswick A, Zada G.  Exoscopic to endoscopic channel-based trans-sulcal resection of a third ventricular cavernous malformation: technical case illustration.  World Neurosurgery.  2021; 148:66.
    https://doi.org/10.1016/j.wneu.2021.01.007
  4. Eichberg DG, Di L, Shah AH, Ivan ME, Komotar R, Starke RM. Use of tubular retractors for minimally invasive resection of deep-seated cavernomas. Operative Neurosurgery. 2020; 18(6):629-639.
    https://dx.doi.org/10.1093/ons/opz184
  5. Alexopoulos G, Prim M, Khan M, Quadri N, Urquiaga FJ, El Tecle N, et al. Minimally Invasive Evacuation of Severe Intraventricular Hemorrhage using the BrainPath Endoport-Assisted Microsurgical System. World Neurosurgery. 2019; 134:e540-e548.
    https://doi.org/10.1016/j.wneu.2019.10.135
  6. O’Connor KP, Strickland AE, Bohnstedt BN.  A contralateral transventricular approach for microsurgical clip ligation of a ruptured intrathalamic aneurysm.  Journal of Clinical Neuroscience. 2019; 68:329-332.
    https://dx.doi.org/10.1016/j.jocn.2019.07.028
  7. Eichberg D, Di L, Ivan M, Komotar R, Starke R.  Minimally invasive transtubular approach for resection of deep-seated cavernomas.  Poster #1143 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
    https://360.aans.org/AppSearch/Eposter?eventid=48888&itemid=EPOSTER&propid=45401
  8. Goren O, Griessenauer CJ, Bohan CO, Berry CM, Schirmer CM.  Minimally invasive parafascicular surgery for resection of cerebral cavernous malformations utilizing image-guided BrainPath system.  Operative Neurosurgery. 2019; 17(4):348-353.
    http://www.doi.org/10.1093/ons/opy389
  9. Abunimer AM, Abou-Al-Shaar H, Cavallo C, Mahan MA, Labib MA. Minimally invasive approaches for the management of intraventricular hemorrhage. Journal of Neurosurgical Sciences. 2018; 62(6):734-744.
    http://dx.doi.org/10.23736/S0390-5616.18.04511-3
  10. Witek AM, Moore NZ, Sebai MA, Bain MD.  BrainPath-mediated resection of a ruptured subcortical arteriovenous malformation.  Operative Neurosurgery.  2018; 15(1):32-38.
    http://dx.doi.org/10.1093/ons/opx186
  11. Chen CJ, Caruso J, Starke RM, et al.  Endoport-assisted microsurgical treatment of a ruptured periventricular aneurysm.  Case Rep Neurol Medicine.  2016; 2016(8654262): 4 pages.
    http://dx.doi.org/10.1155/2016/8654262
  12. Motov S, Bonk MN, Krauss P, Wolfert C, Steininger K, Picht T, et al. Implementation of a three-dimensional (#D) robotic digital microscope (AEOS) in spinal procedures. Sci Rep. 2022; 12:22553.
    https://doi.org/10.1038/s41598-022-27082-1
  13. Amenta PS, Dumont AS, Medel R.  Resection of a left posterolateral thalamic cavernoma with the Nico BrainPath sheath: case report, technical note, and review of the literature.  Interdisciplinary Neurosurgery: Advanced Techniques and Case Management.  2016; 5:12-17.
    http://dx.doi.org/10.1016/j.inat.2016.03.006
  14. Scranton RA, Fung SH, Britz GW.  Transulcal parafascicular minimally invasive approach to deep and subcortical cavernomas: technical note.  Journal of Neurological Surgery. 2016; 125(6):1360-1366.
    http://dx.doi.org/10.3171/2015.12.JNS152185
  15. Ding D, Starke R, Crowley R, Liu K. Endoport-assisted microsurgical resection of cerebral cavernous malformations. Journal of Clinical Neuroscience. 2015; 22(6):1025-1029.
    http://dx.doi.org/10.1016/j.jocn.2015.01.004

Tumor Applications of MIPS & Biopsy

Minimally Invasive Parafascicular Surgery or Biopsy for Primary and Secondary Tumors, Cysts, and Lesions

  1. Gurses ME, Gökalp E, Gecici NN, Lu VM, Shah KH, Singh E, et al. Minimally invasive resection of intracranial lesions using tubular retractors: A single surgeon series. Clin Neurol Neurosurg. 2024;241:108304.
  2. Rakovec M, Camp S, Day D, Chakravarti S, Parker M, Porras JL, et al. Use of tubular retractors to access deep brain lesions: A case series. Journal of Clinical Neuroscience. 2023; 114: 64-69.
    https://link.springer.com/article/10.1007/s00701-021-04927-8
  3. Sefcikova V, Wong QHW, Samandouras G. Practical, Stereotactic, Low-Profile Technique for Transcortical/transventricular Colloid Cyst Removal Independent of Ventricular Size: Technical Note and Analysis of Approaches. Operative Neurosurgery.  2023; 24(2): e61-e67.
    http://doi.org/10.1227/ons.0000000000000463
  4. Ghani I, Patel S, Bodi I, Vergani F, Ashkan K, Bhangoo R, et al. Photodynamics of Subependymal Giant Cell Astrocytoma (SEGA) with 5-Aminolevulinic Acid (5-ALA/Gliolan©). Neuro-Oncology. 2023; 24(4): iv20.
    https://doi.org/10.1093/neurnc/noac200.091
  5. Bakhsheshian J, Strickland BA, Zada G. Chapter 11: Trans-sulcal, Minimally Invasive Parafascicular Surgery for Brain Metastases. Subcortical Neurosurgery. 2022; 153-163.
    https://doi.org/10.1007/978-3-030-95153-5_11
  6. Grossen AA, Pelargos PE, Raskin JS, Virendra DR. Commentary: Using the ROSA Robot for Lesion Resection: A Novel Adapter With Added Applications. Operative Neurosurgery. 2022; 23(2):E214-E215.
    http://doi.org/10.1227/ons.0000000000000354
  7. Pruitt R, Goldstein TA, Rodgers S. Using the ROSA Robot for Lesions Resection: A Novel Adapter With Added Applications. Operative Neurosurgery. 2022; 23(2): 148-153.
    http://doi.org/10.1227/ons.0000000000000277
  8. Das A, Gunasekaran A, Stephens HR, Mark J, Lindhorst SM, Cachia D, et al. Establishing a Standardized Method for the Effective Intraoperative Collection and Biological Preservation of Brain Tumor Tissue Samples Using a Novel Tissue Preservation System: A Pilot Study. World Neurosurgery. 2022; 161:e61-e67.
    https://doi.org/10.1016/j.wneu.2022.01.030
  9. Montemurro N, Scerrati A, Ricciadri L, Trevisi G. The Exoscope in Neurosurgery: An Overview of the Current Literature of Intraoperative Use in Brain and Spine Surgery. Journal of Clinical Medicine. 2022; 11(1): 223.
    https://doi.org/10.3390/jcm11010223
  10. Mosterio A, Amaro S, Torne R, Pedrosa L, Hoyos J, Llull L, et al. Minimally Invasive Surgery for Spontaneous Intracerebral Hematoma. Real-Life Implementation Model and Economic Estimation. Front Neurol. 2022; 13: 884157.
    http://doi.org/10.3389/fneur.2022.884157
  11. Koskay G, Opperman P, Mezzacappa FM, Surdell D. Decision-Making and Management in a Patient With Coexistent Colloid Cyst and Pituitary Macroadenoma: A Case Report. Cureus. 2022; 14(3): e22884.
    http://doi.org/10.7759/cureus.22884
  12. Barbero JMR, Bray D, Pradilla G. Chapter 10: Standard Parafascicular Approaches to Subcortical Regions. Subcortical Neurosurgery. 2022; 137-151.
    https://doi.org/10.1007/978-3-030-95153-5_10
  13. Soliman MAR, Cavallo C, Gandhi S, Zhao X, Labib MA. Chapter 9: Trans-sulcal, Channel-Based Parafascicular Surgery for Subcortical and Intraventricular Lesions: Instruments and Technical Considerations. Subcortical Neurosurgery. 2022; 121-136.
    https://doi.org/10.1007/978-3-030-95153-5_9
  14. Liu TF, Shen WJ, Chen YM, Xie T, Hu F, Li C, et al. Endoscopic transcortical expanded transforaminal transvenous transchoroidal approach to third ventricle lesion resection using an endoport. Journal of Clinical Neuroscience. 2022; 106: 166-172.
    https://doi.org/10.1016/j.jocn.2022.10.025
  15. Marenco-Hillembrand L, Chaichana KL. Chapter 14: Trans-sulcal, Channel-Based Parafascicular Surgery for Colloid Cysts. Subcortical Neurosurgery. 2022; 205-216.
    https://doi.org/10.1007/978-3-030-95153-5_14
  16. Polster SP, Satzer D, Bailes J. Chapter 8: Trans-sulcal, Channel-Based Parafascicular Surgery: Basic Concepts and a General Overview. Subcortical Neurosurgery. 2022; 113-120.
    https://doi.org/10.1007/978-3-030-95153-5_8
  17. Strickland BA, Wedemeyer M, Ruzevick J, Micko A, Shahrestani S, Daneshmand S, et al. 5-Aminolevulinic acid-enhanced fluorescence-guided treatment of high-grade glioma using angled endoscopic blue light visualization: technical case series with preliminary follow-up. Journal of Neurosurgery. 2022; 137(5):1378-1386.
    https://doi.org/10.3171/2022.1.JNS212562
  18. Lavrador JP, Oviedova A, Pereira N, Patel S, Rajwani KM, Sekhon P, et al.  Minimally invasive approach to a deep-seated motor eloquent brain tumour: a technical note.  Journal of Surgical Case Reports. 2022;1:1-4.
    https://doi.org/10.1093/jscr/rjab611
  19. Louis RG, Steinberg GK, Duma C, Britz G, Gavin MD, Mehta V, et al. Early Experience With Virtual and Synchronized Augmented Reality Platform for Preoperative Planning and Intraoperative Navigation: A Case Series. Operative Neurosurgery. 2021; 21(4): 189-196.
    http://doi.org/10.1093/ons/opab188
  20. Sweeney KJ, Amoo M, Kilbride R, Jallo GI, Javadpour M.  Exoscope aided trans-sulcal minimally invasive parafascicular resection of a paediatric brainstem pilocytic astrocytoma using a tubular retractor system.  British Journal of Neurosurgery. 2021.
    https://doi.org/10.1080/02688697.2021.1967880
  21. Rennert RC, Khani M, Thomas K, Morris TW, Rodriguez A, Day JD.  Transsulcal parafascicular brain path-assisted approach to subcortical lesions: 2-dimensional operative video.  Surgical Neurology International.  2021; 12:107.
    https://pubmed.ncbi.nlm.nih.gov/33880212/
  22. Bray DP, Rich CW, Ellis JA, Pradilla G, Barrow DL. Minimally Invasive Resection of Intracerebral Amyloidoma: Case Report and Systematic Review of Literature. World Neurosurgery. 2020; 138:205-213.
    https://doi.org/10.1016/j.wneu.2020.02.072
  23. Marenco-Hillembrand L, Prevatt C, Suarez-Meade P, Ruiz-Garcia H, Quinones-Hinojosa A, Chaichana KL.  Minimally invasive surgical outcomes for deep-seated brain lesions treated with different tubular retraction systems: a systematic review and meta-analysis.  World Neurosurgery. 2020; 143(3):537-545.
    https://doi.org/10.1016/j.wneu.2020.07.115
  24. Belzberg M, Mahapatra S, Perdomo-Pantoja A, Chavez F, Morrison K, Xion KT, et al.  Minimally invasive therapeutic ultrasound: Ultrasound-guided ultrasound ablation in neuro-oncology.  Ultrasonics. 2020; 108:106210.
    https://doi.org/10.1016/j.ultras.2020.106210
  25. Grewel SS, ReFaey K, Ganaha S, Reimer R, Quinones-Hinojosa A, Wharen RE.  Advances in Surgical Approaches to Supratentorial Deep-Seated Lesions. Modern Surgical Approaches to Intrinsic Brain Tumors.  2019; Chapter 23: 393-404.
    https://doi.org/10.1016/B978-0-12-811783-5.00027-6
  26. Zammar SG, Cappelli J, Zacharia BE.  Utility of tubular retractors augmented with intraoperative ultrasound in the resection of deep-seated brain lesions: technical note.  Cureus. 2019; 11(3): e4272.
    https://doi.org/10.7759/cureus.4272
  27. Bander ED, Jones SH, Pisapia D, Magge R, Fine H, Schwartz TH, Ramakrishna R.  Tubular brain tumor biopsy to improve diagnostic yield for subcortical lesions. Journal of NeuroOnc. 2019; 141:121-129.
    https://doi.org/10.1007/s11060-018-03014-w  
  28. Gassie K, Alvarado-Estrada K, Bechtle P, Chaichana KL. Surgical management of deep-seated metastatic brain tumors using minimally invasive approaches. Journal of NeurologicalSurgery-A. 2019; 80(3):198-204.
    https://doi.org/10.1055/s-0038-1676575
  29. Eichberg DG, Buttrick SS, Sharaf JM, Snelling BM, Shah AH, Ivan ME, et al.  Use of tubular retractor for resection of colloid cysts: single surgeon experience and review of literature. Operative Neurosurgery. 2019; 16(5):571-579.
    https://www.doi.org/10.1093/ons/opy249 
  30. Akbari SHA, Sylvester PT, Kulwin C, Shah MV, Somasundaram A, Kamath AA, et al.  Initial experience using intraoperative magnetic resonance imaging during a trans-sulcal tubular retractor approach for the resection of deep-seated brain tumors: a case series.  Operative Neurosurgery.  2019; 16(3):292-301.
    https://doi.org/10.1093/ons/opy108
  31. Bakhsheshian J, Strickland BA, Jackson C, Chaichana KL, Young R, Pradilla G, et al.  Multicenter investigation of channel-based subcortical trans-sulcal exoscopic resection of metastatic brain tumors: a retrospective case series.  Operative Neurosurgery.  2019; 16(2):159-166. https://doi.org/10.1093/ons/opy079
  32. Marenco-Hillembrand L, Alvarado-Estrada K, Chaichana KL.  Contemporary surgical management of deep-seated metastatic brain tumors using minimally invasive approaches.  Frontiers in Oncology. 2018; 8(588).
    https://doi.org/10.3389/fonc.2018.00558
  33. Mampre D, Bechtle A, Chaichana KL.  Minimally invasive resection of intra-axial posterior fossa tumors using tubular retractors.  World Neurosurgery.  2018; 119:e1016-e1020.
    https://doi.org/10.1016/j.wneu.2018.08.049
  34. Iyer R, Chaichana KL.  Minimally invasive resection of deep-seated high-grade gliomas using tubular retractors and exoscopic visualization.  J Neurol Surg A Cent Eur Neurosurg. 2018; 79(04):330-336.
    https://doi.org/10.1055/s-0038-1641738
  35. Eichberg DG, Buttrick S, Brusko GD, Ivan M, Starke RM, Komotar RJ.  Use of tubular retractor for resection of deep-seated cerebral tumors and colloid cysts: single surgeon experience and review of literature.  World Neurosurgery. 2018; 112:e50-e60.
    https://doi.org/10.1016/j.wneu.2017.12.023
  36. Gassie K, Wijesekera O, Chaichana KL.  Minimally invasive tubular retractor-assisted biopsy and resection of subcortical intra-axial gliomas and other neoplasms.  Journal of Neurosurgical Sciences. 2018; 62(6):682-689.
    http://dx.doi.org/10.23736/S0390-5616.18.04466-1
  37. Day JD.  Transsulcal parafascicular surgery using BrainPath for subcortical lesions.  Neurosurgery.  2017; 64(Suppl 1):151-156.
    https://dx.doi.org/10.1093/neuros/nyx324
  38. Buttrick SS, Shah AH, Basil GW, Komotar RJ.  The future of cranial neurosurgery – adapting new approaches.  Neurosurgery.  2017; 64(CN1):144-150.
    https://dx.doi.org/10.1093/neuros/nyx214
  39. Chen Y, Omay SB, Sathwik SR, Liang B, Almeida JP, Ruiz-Trevino AS, et al.  Transtubular excisional biopsy as a rescue for a non-diagnostic stereotactic needle biopsy – case report and literature review.  Acta Neurochir.  2017; 159(9):1589-1595.
    https://dx.doi.org/10.1007/s00701-017-3260-7
  40. Jackson C, Gallia GL, Chaichana KL.  Minimally invasive biopsies of deep-seated brain lesions using tubular retractors under exoscopic visualization.  Journal of Neurological Surgery, A.  2017; 78(6):588-594.
    https://doi.org/10.1055/s-0037-1602698
  41. Somasundaram A, Evans J, Shah M, Asbari SH, Chicoine M, Kulwin C.  Resection of deep-seated intrinsic brain tumors using a novel combination of a minimally invasive tubular brain retraction system, high resolution exoscope visualization, and high field intraoperative magnetic resonance imaging (iMRI).  Poster #2081 presented at: 2016 Congress of Neurological Surgeons Annual Meeting; September 24-28, 2016; San Diego, CA.
    https://www.cns.org/meetings/archived-abstracts-detail/Congress-of-Neurological-Surgeons-2016-Annual-Meeting—Late-Breaking-Science-20654
  42. Habboub G, Sharma M, Barnett GH, Mohammadi AM.  A novel combination of two minimally invasive surgical techniques in the management of refractory radiation necrosis: Technical note.  Journal of Clinical Neuroscience. 2016; 35:117-121.
    https://dx.doi.org/10.1016/j.jocn.2016.09.020
  43. Nagatani K, Takeuchi S, Feng D, Mori K, Day JD. High definition exoscope system for microneurosurgery: Use of an exoscope in combination with tubular retraction and frameless neuronavigation for microsurgical resection of deep brain lesions. Neurological Surgery, Japan. 2015; 43(7): 611-617.
    https://pubmed.ncbi.nlm.nih.gov/26136325/
  44. Labib M, Young RL, Rovin RA, Day JD, Eliyas JK, Bailes JE.  The safety and efficacy of diffusion tensor imaging (DTI)- guided Transulcal radial tubular corridors to subcortical neoplasms: A multicenter study.  Abstract presented at: 2015 Congress of Neurological Surgeons Annual Meeting; September 26-30, 2015; New Orleans, LA.
    https://www.cns.org/meetings/archived-abstracts-detail/Congress-of-Neurological-Surgeons-2015-Annual-Meeting-17718
  45. Eliyas JK, Bailes J.  Early experience with trans-sulcal parafascicular Exoscopic resection of supratentorial brain tumors.  Neuro Oncol. 2014; 16(5):v161.
    https://dx.doi.org/10.1093/neuonc/nou265.13
  46. Rovin R, Kassam AB.  Minimally invasive surgical resection of subcortical tumors using the six pillars system.  Poster #ST-029 presented at: 18th Annual Meeting of the Society for Neuro-Oncology; November 21-24, 2013; San Francisco, CA.
    https://academic.oup.com/neuro-oncology/article/15/suppl_3/iii217/1089266

Minimally Invasive Parafascicular Surgery for Intraventricular Tumors, Cysts, and Lesions

  1. Felicio TA, Prevedello DM. Chapter 5: The Evolution of Trans-Sulcal Channel-Based Parafascicular Surgery. Subcortical Neurosurgery. 2022;67-77.
    https://doi.org/10.1007/978-3-030-95153-5_5
  2. Weyhenmeyer J, Scranton RA, Kulwin C, Shah MV. Chapter 17: Surgical Resection of Intraventricular Tumors Using a Minimally Invasive Parafascicular (MIP) Approach with a Navigated Tubular Retractor System. Subcortical Neurosurgery. 2022: 237-249.
    https://doi.org/10.1007/978-3-030-95153-5_17
  3. Lin M, Bakhsheshian J, Strickland B, Rennert RC, Chen JW, Van Gompel JJ, et al.  Navigable channel-based trans-sulcal resection of third ventricular colloid cysts: a multicenter retrospective case series and review of the literature.  World Neurosurgery. 2020; 133:e702-e710.
    https://doi.org/10.1016/j.wneu.2019.09.134   
  4. Lin M, Bakhsheshian J, Strickland B, Rennert RC, Chu RM, Chaichana KL, et al.  Exoscopic resection of atrial intraventricular meningiomas using a navigation-assisted channel-based trans-sulcal approach: Case series and literature review. Journal of Clinical Neuroscience. 2020; 71:58-65.
    https://doi.org/10.1016/j.jocn.2019.10.017
  5. Chakravarthi SS, Kassam AB, Fukui BM, Monroy-Sosa A, Rothong N, Cunningham J, et al.  Awake surgical management of third ventricular tumors: a preliminary safety, feasibility, and clinical applications study.  Operative Neurosurgery. 2019; 17(2):208-226.
    https://doi.org/10.1093/ons/opy405
  6. Vigneswaran K, Pradilla G.  Tubular retractors for intraventricular tumors.  Comprehensive Overview of Modern Surgical Approaches to Intrinsic Brain Tumors.  2019; Chapter 27: 451-463.
    https://doi.org/10.1016/B978-0-12-811783-5.00027-6
  7. Eliyas JK, Glynn R, Kulwin CG, et al.  Minimally-invasive trans-sulcal resection of Intra-ventricular and Peri-ventricular lesions through a tubular retractor system: Multi-centric experience and results.  World Neurosurgery.  2016; 90: 556-564.
    https://dx.doi.org/10.1016/j.wneu.2015.12.100
  8. Alzate J, Young R, Rovin R.  A novel minimally invasive approach for the resection of intraventricular tumors.  Neuro Oncol. 2014; 16(5):v127.
    https://www.doi.org/10.1093/neuonc/nou260.3   

MIPS Across Multiple Disease States

  1. Achey RL, Pranay S, Kashkoush A, Kondylis E, Moore N, Bain M.  Novel use of the Aurora Surgiscope for minimally invasive resection of intraparenchymal lesions: a case series.  Operative Neurosurgery. 2022; 23(3):182-187.
    https://doi.org/10.1227/ons.0000000000000292
  2. Day JD. Chapter 12: Minimally Invasive Parafascicular Surgery (MIPS) for Primary and Metastatic Brain Neoplasms. Subcortical Neurosurgery. 2022; 165-191.
    https://doi.org/10.1007/978-3-030-95153-5_12
  3. Liu S, Wu S, Xie T, Yeh YY, Li T, Sun C, et al. Neuronavigation-Guided Transcortical-Transventricular Endoport-Assisted Endoscopic Resection for Thalamic Lesions: Preliminary Experience. World Neurosurgery. 2022; 166: 19-27.
    https://doi.org/10.1016/j.wneu.2022.06.110
  4. Cartwright MM, Sekerak P, Mark J, Bailes J.  Use of a novel navigable tubular retractor system in 1826 minimally invasive Parafascicular surgery (MIPS) cases involving deep-seated brain tumors, hemorrhages, and malformations.  Interdisciplinary Neurosurgery. 2021; 23:100919.
    https://doi.org/10.1016/j.inat.2020.100919
  5. Echeverry N, Mansour S, MacKinnon G, Jaraki J, Shapiro S, Snelling B.  Intracranial tubular retractor systems: a comparison and review of the literature of the BrainPath, Vycor, and METRx tubular retractors in the management of deep brain lesions.  World Neurosurgery. 2020; 143:134-146.
    https://doi.org/10.1016/j.wneu.2020.07.131
  6. Eichberg DG, Di L, Shah AH, Luther EM, Jackson C, Marenco-Hillembrand L, et al.  Minimally invasive resection of intracranial lesions using tubular retractors: a large, multi-surgeon, multi-institutional series.  JNeuro-Oncology. 2020; 149:35-44.
    https://doi.org/10.1007/s11060-020-03500-0
  7. Mansour S, Echeverry N, Shapiro S, Snelling B. The Use of BrainPath Tubular Retractors in the Management of Deep Brain Lesions: Review of Current Studies. World Neurosurgery. 2020; 134:155-163.
    https://doi.org/10.1016/j.wneu.2019.08.218
  8. Cartwright M, Alzate J.  Experiential summary of 286 cases of brain surgery in older adults using a navigable tubular retractor system for the trans-sulcal removal of deep-seated brain tumors and vascular hemorrhages, malformations and lesions. Poster presented at: 2018 American Association of Neurological Surgeons Annual Meeting; April 28-May 2, 2018; New Orleans, LA.
  9. Cartwright M, Hagerman E, Dougherty B, Mark J.  Stepwise development and commercialization of a modern navigable tubular access assembly system through a multidisciplinary startup-academic collaboration.  Poster presented at: Poster presented at: 2018 American Association of Neurological Surgeons Annual Meeting; April 28-May 2, 2018; New Orleans, LA.
  10. Polster SP, Cartwright MM, Patel V, Bailes JE.  Experiential summary of 1032 cases of adult brain surgery using a navigable trans-sulcal tubular retractor device for the removal of deep-seated brain lesions.  Poster presented at: 2017 Congress of Neurological Surgeons Annual Meeting; October 7-11, 2017; Boston, MA.
    https://www.cns.org/Assets/e938ea2a-fff1-4f5e-b675-ffbab36c9514/637056126889470000/23247-pdf
  11. Gonen L, Chakravarthi SS, Monroy-Sosa A, Celix JM, Kojis N, Singh M, et al.  Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery: feasibility, safety, and clinical applications.  Neurosurgical Focus. 2017; 42(5):E9.
    https://dx.doi.org/10.3171/2017.3.FOCUS1712
  12. Kassam AB, Labib MA, Bafaquh M, et al. Part II: an evaluation of an integrated systems approach using diffusion-weighted, image-guided, Exoscopic-assisted, transulcal radial corridors. Innovative Neurosurgery. 2015; 3(1-2):25-33.
    https://www.researchgate.net/publication/277574286
  13. Kassam AB, Labib MA, Bafaquh M, et al. Part I: the challenge of functional preservation: an integrated systems approach using diffusion-weighted, image-guided, Exoscopic-assisted, transulcal radial corridors. Innovative Neurosurgery. 2015; 3(1-2):5-23.
    https://www.researchgate.net/publication/277881358
  14. Kulwin CG, Shah MV.  Minimally invasive parafascicular approach to deep cerebral lesions: initial Indiana University experience.  Presented at: 2014 Neurosurgical Society of America Annual Meeting; June 2014.
  15. Labib M, Ghinda D, Bafaquh M, Kumar R, Agbi C, Kassam AB.  The diffusion tensor imaging (DTI) guided Transulcul Exoscopic radial corridor approach for the resection of lesions in the sensorimotor area.  Poster #1598 presented at: 2013 Congress of Neurological Surgeons Annual Meeting; October 19-23, 2013; San Francisco, CA.
    https://www.cns.org/meetings/archived-abstracts-detail/Congress-of-Neurological-Surgeons-2013-Annual-Meeting-13369

Pediatric Applications of MIPS

  1. Materi J, Ahmed AK, Kalluri AL, Ammar A, Cohen AR. Prophylactic removal of a migratory missile from the cerebral ventricles: case report. Childs Nerv Syst. 2024;40(4):1307-1310.
    https://doi.org/10.1007/s00381-023-06248-w
  2. Orozco AR, Verhey LH, Chakravarthi S, Lyons L, Madura C, Bercu MM, et al. Minimally invasive transsulcal Parafascicular resection of subcortical lesions in pediatric patients: a preliminary retrospective case series study. Neurosurgery. 2020; 65(Supp_1):nyaa447_586.
    https://doi.org/10.1093/neuros/nyaa447_586
  3. Chakravarthi SS, Lyons L, Bercu M, Singer JA. Minimally invasive Parafascicular surgical approach for the management of a pediatric third ventricular ependymoma: case report and review of literature. World Neurosurgery. 2020; 141:311-317.
    https://doi.org/10.1016/j.wneu.2020.04.201
  4. Chang KE, Botros J, Kiehna E. Minimally invasive resection of rolandic cavernomas in children using a novel navigable tubular retractor system. Poster #1316 presented at: 2019 American Association of Neurological Surgeons Annual Meeting; April 13-17, 2019; San Diego, CA.
  5. Kiehna EN, Young RL. Minimally invasive resection of subcortical pediatric brain tumors and vascular malformations using a novel navigable tubular retractor system. Poster PF-091 presented at: 46th Annual Meeting of International Society for Pediatric Neurosurgery. October 7-11, 2018; Tel Aviv, Israel.
  6. Chang K, Botros J, Kiehna EN. Minimally invasive resection of subcortical pediatric brain tumors and vascular malformations using a novel navigable tubular retractor system. Poster 639 presented at: 2018 Congress of Neurological Surgeons Meeting, October 8-10, 2018; Houston, TX.
    https://www.cns.org/meetings/archived-abstracts-detail/Congress-of-Neurological-Surgeons-2018-Annual-Meeting-25682
  7. Chang K, Botros J, Kiehna EN, Krieger MD. Minimally invasive resection of rolandic cavernomas in children using a novel navigable tubular retractor system. Poster 661 presented at: 2018 Congress of Neurological Surgeons Meeting, October 8-10, 2018; Houston, TX.
    https://www.cns.org/meetings/archived-abstracts-detail/Congress-of-Neurological-Surgeons-2018-Annual-Meeting-25687
  8. Young RA, Cartwright M, Kiehna EN. Minimally invasive resection of subcortical pediatric brain tumors and vascular malformations using a novel navigable tubular retractor system. Presented at: 2017 AANS/CNS Pediatric Section Meeting; November 29-December1, 2017; Houston, TX.
  9. Kiehna EN. Minimally invasive resection of rolandic cavernomas in children using a novel navigable tubular retractor system. Presented at: 13th Annual Angioma Alliance CCM Scientific Meeting; October 26-27, 2017; Washington, DC.
  10. Weiner HL, Placantonakis DG. Resection of a pediatric thalamic juvenile pilocytic astrocytoma with whole brain tractography. Cureus. 2017; 9(10):e1768.
    https://dx.doi.org/10.7759/cureus.1768

Footer

OUR MISSION is SIMPLE

We provide proven and patented technologies that integrate imaging and intervention for a safe, minimally disruptive approach to brain surgery. This integration drives efficiencies for the patient, surgeon and healthcare provider.

Customer Service

 Tel: (317) 660-7118
 Email Us

Follow NICO Here

  • LinkedIn
  • Twitter
  • YouTube
Social Media Links

Search Our Website

privacy policy   ·    ethics hotline   ·    terms of use   ·    patents    ·   labeling

Copyright © 2025 · Nico Corporation · NICO Myriad and BrainPath are “tools” not “treatments”. Physicians should use their best judgment and clinical experience when deciding how to use the Myriad and BrainPath. The latest information, including contraindications, warnings and precautions can be obtained by consulting product labeling or your local NICO representative.